Hybrid Deterministic-Stochastic Methods for Data Fitting
نویسندگان
چکیده
Many structured data-fitting applications require the solution of an optimization problem involving a sum over a potentially large number of measurements. Incremental gradient algorithms offer inexpensive iterations by sampling a subset of the terms in the sum; these methods can make great progress initially, but often slow as they approach a solution. In contrast, full-gradient methods achieve steady convergence at the expense of evaluating the full objective and gradient on each iteration. We explore hybrid methods that exhibit the benefits of both approaches. Rate-ofconvergence analysis shows that by controlling the sample size in an incremental-gradient algorithm, it is possible to maintain the steady convergence rates of full-gradient methods. We detail a practical quasi-Newton implementation based on this approach. Numerical experiments illustrate its potential benefits.
منابع مشابه
Erratum: Hybrid Deterministic-Stochastic Methods for Data Fitting
∗Submitted to the journal’s Computational Methods in Science and Engineering section February 1, 2013; accepted for publication March 25, 2013; published electronically August 30, 2013. http://www.siam.org/journals/sisc/35-4/90825.html †Department of Computer Science, University of British Columbia, Vancouver V6T 1Z4, BC, Canada ([email protected]). ‡INRIA-SIERRA team, Laboratoire d’Informatique de...
متن کاملA hybrid CS-SA intelligent approach to solve uncertain dynamic facility layout problems considering dependency of demands
This paper aims at proposing a quadratic assignment-based mathematical model to deal with the stochastic dynamic facility layout problem. In this problem, product demands are assumed to be dependent normally distributed random variables with known probability density function and covariance that change from period to period at random. To solve the proposed model, a novel hybrid intelligent algo...
متن کاملPerformance evaluation of Iranian electricity distribution units with stochastic Data Envelopment Analysis
Performance evaluation of electricity distribution units is an important issue between researchers and regulators. Classic Data Envelopment Analysis models with deterministic data have been used by many authors to measure efficiency of power distribution units in different countries. However, Data Envelopment Analysis with stochastic data are rarely used to measure efficiency of distribution co...
متن کاملPerformance evaluation of Iran universities with Stochastic Data Envelopment Analysis (SDEA)
Performance evaluation of universities is an important issue between researchers. Classic data envelopment analysis (DEA) models with deterministic data have been used by many authors to measure efficiency of universities in different countries. However, DEA with stochastic data are, rarely used to measure efficiency of universities. In this paper, input oriented model in stochastic data env...
متن کاملA generalized super-efficiency model for ranking extreme efficient DMUs in stochastic DEA
In this current study a generalized super-efficiency model is first proposed for ranking extreme efficient decision making units (DMUs) in stochastic data envelopment analysis (DEA) and then, a deterministic (crisp) equivalent form of the stochastic generalized super-efficiency model is presented. It is shown that this deterministic model can be converted to a quadratic programming model. So fa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 34 شماره
صفحات -
تاریخ انتشار 2012